Person Re-identification by Discriminatively Selecting Parts and Features
نویسندگان
چکیده
This paper presents a novel appearance-based method for person re-identification. The core idea is to rank and select different body parts on the basis of the discriminating power of their characteristic features. In our approach, we first segment the pedestrian images into meaningful parts, then we extract features from such parts as well as from the whole body and finally, we perform a salience analysis based on regression coefficients. Given a set of individuals, our method is able to estimate the different importance (or salience) of each body part automatically. To prove the effectiveness of our approach, we considered two standard datasets and we demonstrated through an exhaustive experimental section how our method improves significantly upon existing approaches, especially in multiple-shot scenarios.
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملDeep-Person: Learning Discriminative Deep Features for Person Re-Identification
Recently, many methods of person re-identification (ReID) rely on part-based feature representation to learn a discriminative pedestrian descriptor. However, the spatial context between these parts is ignored for the independent extractor on each separate part. In this paper, we propose to apply Long Short-Term Memory (LSTM) in an end-to-end way to model the pedestrian, seen as a sequence of bo...
متن کاملCross Domain Knowledge Transfer for Person Re-identification
Person Re-Identification (re-id) is a challenging task in computer vision, especially when there are limited training data from multiple camera views. In this paper, we propose a deep learning based person re-identification method by transferring knowledge of mid-level attribute features and high-level classification features. Building on the idea that identity classification, attribute recogni...
متن کاملPerson re-identification with fusion of hand-crafted and deep pose-based body region features
Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...
متن کاملDivide and Fuse: A Re-ranking Approach for Person Re-identification
As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a “Divide and ...
متن کامل